Search results for "quantum simulation"
showing 8 items of 8 documents
Quantum walk on a cylinder
2016
We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as …
From Behavior of Water on Hydrophobic Graphene Surfaces to Ultra-Confinement of Water in Carbon Nanotubes
2021
In recent years and with the achievement of nanotechnologies, the development of experiments based on carbon nanotubes has allowed to increase the ionic permeability and/or selectivity in nanodevices. However, this new technology opens the way to many questionable observations, to which theoretical work can answer using several approximations. One of them concerns the appearance of a negative charge on the carbon surface, when the latter is apparently neutral. Using first-principles density functional theory combined with molecular dynamics, we develop here several simulations on different systems in order to understand the reactivity of the carbon surface in low or ultra-high confinement. …
Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks
2018
International audience; Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two step…
Adiabatic quantum simulation with a segmented ion trap: Application to long-distance entanglement in quantum spin systems
2013
We investigate theoretically systems of ions in segmented linear Paul traps for the quantum simulation of quantum spin models with tunable interactions. The scheme is entirely general and can be applied to the realization of arbitrary spin-spin interactions. As a specific application we discuss in detail the quantum simulation of models that exhibit long-distance entanglement in the ground state. We show how tailoring of the axial trapping potential allows for generating spin-spin coupling patterns that are suitable to create long-distance entanglement. We discuss how suitable sequences of microwave pulses can implement Trotter expansions and realize various kinds of effective spin-spin int…
Tensor Network Annealing Algorithm for Two-Dimensional Thermal States
2019
Tensor network methods have become a powerful class of tools to capture strongly correlated matter, but methods to capture the experimentally ubiquitous family of models at finite temperature beyond one spatial dimension are largely lacking. We introduce a tensor network algorithm able to simulate thermal states of two-dimensional quantum lattice systems in the thermodynamic limit. The method develops instances of projected entangled pair states and projected entangled pair operators for this purpose. It is the key feature of this algorithm to resemble the cooling down of the system from an infinite temperature state until it reaches the desired finite-temperature regime. As a benchmark we …
Quantum walks: background geometry and gauge invariance
2019
Ciertos tipos de problemas no pueden resolverse usando los actuales ordenadores clásicos. Una forma de encontrar una solución, es mediante el uso de ordenadores cuánticos. Sin embargo, construir un ordenador cuántico es realmente complicado actualmente, debido a las limitaciones tecnológicas. Mientras tanto, los simuladores cuánticos han sido capaces de resolver algunos de estos problemas, ya que los simuladores cuánticos son más accesibles experimentalmente. Las llamadas caminatas cuánticas, en su versión discreta, son una herramienta muy útil para simular ciertos sistemas físicos. En el límite al continuo, se puede obtener una serie de ecuaciones diferenciales, particularmente, la ecuació…
Atoms, Photons and Entanglement for Quantum Information Technologies
2011
Atoms, Photons and Entanglement for Quantum Information Technologies Julio T. Barreiro a, Dieter Meschede b, Eugene Polzik c, E. Arimondo d, Fabrizio Illuminati e, Luigi Lugiato f a Institut fur Experimentalphysik, Universitat Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria b Institut fur Angewandte Physik, Universitat Bonn, Wegelerstr. 8, D-53115 Bonn, Germany c Niels Bohr Institute, Danish Quantum Optics Center QUANTOP, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark d Dipartimento di Fisica, Universita di Pisa, Lgo Buonarroti 3, I-56122 Pisa, Italy e Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (…
Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations
2016
A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on a novel control of periodic symmetry, which eliminates artifacts due to deformation constraints and quantum finite-size effects, and allows transparent electronic structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting novel electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and MoS nanowires. The technique drives simulations markedly closer to the reali…